在高速铣削加工模具中,刀具技术最关键,而且涉及面多,主要体现在刀具材料及几何参数选择、刀具的损坏与检测、刀具与机床的连接技术、刀具的安全性等问题上。
1 刀具材料及几何参数选择
(1)刀具材料
高速铣削要求高速刀具材料与被加工材料必须有较小的化学亲和力,具有良好的热稳定性、抗冲击性、耐磨性、抗热疲劳性,并具有优良的力学性能等。
目前,用于高速硬铣削的刀具材料主要有聚晶立方氮化硼(PCBN)、陶瓷、新型硬质合金和涂层硬质合金等,应根据模具材料、刀具几何形状、切削条件三大因素来选择刀具材料。
由于聚晶立方氮化硼(PCBN)刀具具有很高的硬度和耐磨性,因而适合于高速切削淬硬钢。在加工硬度低于50HRC的工件时,PCBN刀具形成的切屑为长条形,在刀具表面产生月洼磨损,从而缩短刀具寿命。因此,PCBN刀具适合加工硬度高于55~65HRC的材料。
陶瓷刀具的成本低于PCBN刀具,具有良好的热化学稳定性,但其韧性和硬度不如PCBN刀具好。因此,陶瓷刀具比较适合加工相对比较软的材料(HRC≤50)。新型硬质合金和涂层硬质合金刀具成本较低,但切削硬度不如PCBN刀具和陶瓷刀具,一般在40~50HRC之间。
从目前研究情况看,在所有模具高速切削刀具材料中,聚晶立方氮化硼(PCBN)刀具的性能较好,是进行淬硬钢模具加工的主要刀具材料。
(2)刀具几何参数选择
当刀具材料选定后,刀具几何参数的选择对刀具的寿命和切削速度有较大的影响,一般应选择强度尽可能大的刀片形状,刀尖圆弧半径也尽可能大。
另外,硬切削的切削力大,除要求刀片强度外,对刀杆强度和刚度要求也高。
2 刀具的损坏与检测
(1)刀具损坏
由于高速铣削刀具价格较贵,刀具的损坏严重缩短了刀具的使用寿命,增加了高速铣削加工的成本。因此,控制刀具的损坏,加强刀具的检测对高速铣削具有重要意义。刀具损坏有磨损和破损两种情况。磨损是刀具在加工过程中与工件发生接触和摩擦而产生的表面材料消耗现象;破损是刀具发生崩刃、断裂、塑性变形等导致刀具失去切削能力的现象,它包括脆性破损和塑性破损。
刀具磨损是高速铣削中需解决的一个难题。高速铣削时刀具的磨损主要有后刀面磨损、前刀面月牙洼磨损、边界磨损、微崩刃、片状剥落、塑性变形等形态。不同加工材料及高速刀具材料的主要磨损形式不同。后刀面磨损是高速刀具磨损的最常见的形式,也是刀具的正常磨损形式,一般用后刀面均匀磨损区宽度VB值作为刀具的磨损极限。后刀面磨损区宽度加大会使刀具切削迅速减弱。前刀面月牙洼磨损主要出现在塑性金属的高速切削加工中,常发生在切削温度较高而刀具红硬性差的切削条件下。边界磨损常发生在刀具后刀面的刀具、工件接触边缘处,形状为一狭长沟槽。高速切削不锈钢、高温合金时易发生边界磨损。微崩刃是在刀具切削刃上产生的微小缺口,通常发生在断续高速切削时。
片状剥落主要发生在刀具的前、后刀面上,其原因是刀具-切屑、刀具-工件接触区的接触疲劳或热应力疲劳所致。
(2)刀具的检测
目前,刀具检测主要采用人工检测、离线检测和在线检测三种形式。人工检测是由工人在加工时凭经验对刀具的状态进行检测;离线检测是在加工之前对刀具进行专门检测,并预测其寿命,看能否完成当前的加工任务;在线检测也称实时检测,是在加工过程中实时对刀具进行检测,并依据检测结果进行相应的处理。
3 刀具与机床连接技术
在高速切削条件下,刀具与机床的连接系统是影响加工精度和刀具安全性的重要方面,传统的标准7:24锥度实心长刀柄结构已不能满足高速切削的要求,必须研制和开发各种新型结构的刀柄来连接刀具与机床。高速切削条件下,要求刀具系统(刀具、夹头和刀柄)具有以下特点:
(1)较高的刀具系统精度
刀具系统精度包括系统定位夹持精度和刀具重复定位精度,前者指刀具与刀柄、刀柄与机床主轴的连接精度;后者指每次换刀后刀具系统精度一致性。刀具系统具有较高的系统精度,才能保证高速加工条件下刀具系统应有的静态和动态稳定性。
(2)较高的刀具系统刚性
刀具系统的静、动刚性是影响加工精度及切削性能的重要因素。刀具系统刚性不足会导致刀具系统振动,从而降低加工精度,并加剧刀具的磨损,降低刀具的使用寿命。
(3)较好的动平衡性
高速加工条件下,微小质量的不平衡都会造成巨大的离心力,引起机床和加工过程的急剧振动。因此,高速刀具系统的动平衡非常重要。
为了适应高速切削加工对刀具系统的要求,近十多年来,各工业发达国家相继研制开发了多种新型结构的刀柄。目前最具有代表性的是德国的HSK刀柄、美国的KM刀柄以及日本的BIG—PLUS刀柄。
HSK刀柄由锥面和法兰端面完成径向和轴向双面定位,实现与主轴的刚性连接。当刀柄在机床主轴上安装时,锥度为1:10的空心短锥柄与主轴锥孔完全接触,起到定心作用,实现刀具与主轴间的同轴度。此时,HSK刀柄法兰盘与主轴端面间还存在着约0.1mm的间隙。在拉紧机构作用下,拉杆向左移动使其前端锥面将弹性夹爪径向胀开,同时夹爪的外锥面作用在空心短锥柄内孔的30°锥面上,空心短锥柄产生弹性变形,并使其端面与主轴端面靠紧,实现了刀柄与主轴锥面和主轴端面同时定位和夹紧的功能。
KM刀柄是与HSK刀柄并存的1:10短锥空心刀柄,锥柄长度仅为标准7:24锥度实心长刀柄的1/3。由于配合锥度较短,部分解决了端面与锥面同时定位而产生的干涉问题。另一方面,KM刀柄与主轴锥孔间的配合过盈量较高,可达HSK刀柄结构的2~5倍,连接刚度比HSK刀柄高。同时,与其它类型的空心锥柄连接相比,相同法兰外径采用的锥柄直径较小,因而主轴锥孔在高速旋转时扩张小,高速性能好。
4 刀具的安全性
高速铣削模具时应对铣刀提出安全性要求。试验证明,普通铣刀的结构和强度不能适应高速切削的要求。铣刀在高速旋转时,刀具的各部分承受的离心力已远远超过切削力本身的作用,成为刀具的主要载荷。当离心力达到一定的程度时,会造成刀具的变形,甚至破裂,从而造成严重的后果。因此,研究高速铣刀的安全性技术,防止由离心力引起的刀具损坏,对高速铣削模具的刀具技术有极其重要的意义。
德国在高速切削工具系统的方面研究成果为高速切削加工技术的推广应用作出了重要贡献。早在20世纪90年代初德国就开始了对高速铣刀的安全性技术研究,取得了一系列的成果,并制订了DIN6589-1《高速旋转铣刀的安全性要求》标准草案,规定了高速铣刀失效的试验方法和标准,在技术上提出了高速铣刀设计、制造和使用的指导性意见,规定了统一的安全性检验方法。该标准草案已成为各国高速铣刀安全性的指导性文件。
高速铣刀的安全失效形式有两种:变形和破裂。不同类型的铣刀,其安全试验方法也不同。对于机夹可转位铣刀,一种试验方法是在1.6倍于最大使用转速下刀具的永久性变形或零件的位移不超过0.05mm;另一种试验方法是在2倍于最大使用转速下刀具不发生破裂,包括夹紧刀片的螺钉被剪断、刀片或其他夹紧元件被甩飞、刀体爆裂等。对于整体式铣刀,则必须在2倍于最大使用转速条件下试验而不发生弯曲或断裂。
结合高速铣刀安全性标准,通过有限元计算模型的分析,为适应高速铣刀的安全性要求,可从以下几个方面着手:
(1)刀具质量和刀具结构
减轻刀具质量、减少刀具系统构件数和简化刀具系统结构是提高刀具破裂极限的有效途径。比较同一直径刀具用试验求得的破裂极限与刀具质量、刀具构件数和构件接触面数间的关系,可以发现,刀具质量越轻,刀具系统构件数量和构件接触面越少,刀具破裂极限转速越高。为减小刀具质量,应根据材料抗拉强度与密度的比值以及刀具应用的转速范围选择刀体材料。目前,有采用高强度铝合金制造高速铣刀刀体。
在刀具结构上,应注意避免和减小应力集中。刀体上的槽(包括刀座槽、容屑槽、键槽)会引起应力集中,降低刀体的强度,因此应尽量避免通槽和槽底带尖角。同时,刀具的结构应对称于回转轴,使重心通过铣刀的轴线。刀片和刀座的夹紧、调整结构应尽可能消除游隙,并且要求重复定位性好。
(2)刀具(刀片)的夹紧方式
模拟计算和破裂试验研究表明,高速铣刀刀片的夹紧方法不允许采用通常的摩擦力夹紧,而要用带中心孔的刀片用螺钉夹紧,或用特殊设计的刀具结构,以防止刀片甩飞。刀座、刀片的夹紧力方向最好与离心力方向一致,同时要控制好螺钉的预紧力,防止螺钉因过载而提前受损。小直径带柄铣刀有两种高精度、高刚度的夹紧方法:液压夹头和热胀冷缩夹头。
(3)刀具的动平衡性
在高速旋转时,刀具的不平衡不仅会引起机床主轴系统振动,影响加工精度,同时还会对刀具系统产生附加径向载荷,其大小与刀具转速平方成正比。
由此可见,提高刀具的动平衡性可较大程度地减小离心力,提高高速刀具的安全性。因此,按照《高速旋转铣刀的安全性要求》标准草案要求,用于高速切削的铣刀必须经过动平衡测试,并应达到ISO1940-1规定的G4.0平衡质量等级以上要求。
网友点评